- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Chillar, Komal (2)
-
Eriyagama, Adikari M. (2)
-
Fang, Shiyue (2)
-
Yin, Yipeng (2)
-
Apostle, Alexander (1)
-
Halami, Bhaskar (1)
-
Shahsavari, Shahien (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Over a hundred non-canonical nucleotides have been found in DNA and RNA. Many of them are sensitive toward nucleophiles. Because known oligonucleotide synthesis technologies require nucleophilic conditions for deprotection, currently there is no suitable technology for their synthesis. The recently disclosed method regarding the use of 1,3-dithian-2-yl-methyl (Dim) for phosphate protection and 1,3-dithian-2-yl-methoxycarbonyl (Dmoc) for amino protection can solve the problem. With Dim–Dmoc protection, oligodeoxynucleotide (ODN) deprotection can be achieved with NaIO 4 followed by aniline. Some sensitive groups have been determined to be stable under these conditions. Besides serving as a base, aniline also serves as a nucleophilic scavenger, which prevents deprotection side products from reacting with ODN. For this reason, excess aniline is needed. Here, we report the use of alkyl Dim (aDim) and alkyl Dmoc (aDmoc) for ODN synthesis. With aDim–aDmoc protection, deprotection is achieved with NaIO 4 followed by K 2 CO 3 . No nucleophilic scavenger such as aniline is needed. Over 10 ODNs including one containing the highly sensitive N 4 -acetylcytidine were synthesized. Work on extending the method for sensitive RNA synthesis is in progress.more » « less
-
Chillar, Komal; Yin, Yipeng; Eriyagama, Adikari M.; Fang, Shiyue (, PeerJ Analytical Chemistry)Oligodeoxynucleotides (ODNs) are typically purified and analysed with HPLC equipped with a UV-Vis detector. Quantities of ODNs are usually determined using a UV-Vis spectrometer separately after HPLC, and are reported as optical density at 260 nm (OD 260 ). Here, we describe a method for direct determination of OD 260 of ODNs using the area of the peaks in HPLC profiles. It is expected that the method will save significant time for researchers in the area of nucleic acid research, and minimize the loss of oligonucleotide samples.more » « less
An official website of the United States government
